
Master Theorem Dynamic Programming NP-completeness
Reduction

T(n) = aT((7) + 0(nd) 1
. Meaning of each table entry NP-hard

B &A
as b > 1 d=0 2. Write down recurrence relation Reducing problem B to A

Tin) =

/ga 3. Size of table ; order you
filiti is Gashauna NP complete to your problem

-> make sure recurrence doesn't use undefined values ↑Y Show yes - yes ,
no - no

4
.

Induction hypothesis : your recurrence (2) Computes & (or yes-yes, yes = yes)

Common Equation Runtimes values that respect the meaning (1) for all entries

T(u) = 2 T(z) + -> 0(n) I previously filled out (induct on time) puzzesPrb..
Some NP-complete Problems

T(n) = T(z) + c
-> O(logn) 5. Induction Step · Independent Set : given input

T(n) = T(E) + m - 0(n) 6. Find the answer where? (2
. g.T[n]) in poly time G

,
R

,

is there a subset of R

T(n) = 2T(z) + cn -> 0(nlogn) non-adjacent vertices?

T(u) = 2T(n - 1) + 1 - 0(2") Greedy Steps
· Vertex Cover : Given G

,
k

,

is there a set of Ik

T(n) = 4T(E) + n2 -> O(n'logn)
1

.

Your greedy alg .
makes Choices C

,
"

; Cn
nodes that "covers" all edges

2. We will show by induction on R that C
, ..., C(IH)

-(n = ST(z) + n - 0(n23) can be completed into some opt. solution · Edge Cover : Same as Vertex
,

but now are there

3. Let OPTk be the opt.
Solution that extends C

, " In set of1R edges that "covers" all nodes
Linear Programming 4. Show that Cr+ is in OPT

,
or that Ck+

can somehow
· 3SAT : I clause

,

which is 3 literals OR'd together,
Several real variables

be "swapped into
"

OPTI Wo hurting it
which is either X :

or
i

As many linear constraints (=
, =,)

Entropy of P Capacity of s-t cut Can we satisfy all clauses?

as you want (capacity
,
flow

,
etc.)

Pj = probability ofj Sum of all capacities leaving
· Set Packing : in the universe I

, ... n with K

A linear objective H(P) = - [P; logP; the s side of cut Sets S1
, ..., Sm

,

are there k of these sets w/

H(pr) = n . H(P)
-> upper bound on s-t flow no overlaps (disjoint)?

Lempel-Ziv
· Set Cover : are there k of these sets that cover

ooooll000 ... Huffmann 1
, ..., n ?

Dictionary : Encoding : keep merging smallest probabilities
· Circuit SAT : Given circuit c are there inputs

⑦- empty
00

, Left O
, right 1

that makec output "true"?

OI
,

· Subset Sum : You have positive integers 4,.
"

,

2 - 1 10 , Always Within 1-bit of opt .
Solution

In
,

is there a subset that adds up to k ?

3- 00 II
,

4 - 01 4)
,

Kruskal
DJ

· Hamiltonian Path : is there a path in graph

5-001 30 Add smallest edge that won't
G that visits every vertex exactly once

6-000 :
form cycle , repeat

for if -n
· Hamiltonian Cycle :Same as above but cycle

[i] -max (1
,

· Knapsack Problem : if we have items W/

Some Example Recurrence Relationships max TChJ+ weights and values
,
fill up knapsack below

Battle game
:Send i soldiers to battle; , Blijj] = Score ki

:SSis
weight limit while maximizing value

T[i
.j] = best score possible using : soldiers for battles (v;

return max Tsi] Yell into text editor

=Max B[K
, j]+ T[i - k

,
j - 1] -

i

RE50
, .., i n -> total soldiers

OOB
,

uninitialized ->

Answer @T[n ,m] (m+ last battle) T[0
,
0] = 0

for in un

Longest Common Subsequence : O(ij) = O(mu) for jeovi -1

Thi
. j] = LCS between A[li-

,
i)

,
B[1 , - , j] T(ij]= min(2+T(i-, j] ,

Out-of-bounds access returns O
1 + T(i- 1

, j])

Thi
,
s] = max(T(i+, j]

,
T(i

,
j - 1]) if A[i] = B2j] Thi , i]<3 + min T(i

. j]
jeo , ..., i - 13& 1 + Thi-1

,
ju1] oth minT[n, j]

Making Change : forn cents using <
...Ch

T[i
,
j] = fewest # of coins to make i cents

= min (T[i-c ,
j]+ 1

,
T[i

, j
- 1]) O(nk)

Bellman-Ford Big-O comparisons

Timi eloglogn<+ logu ga
a

< 2 (logn)" +2n < 10003< (n + 1) !
Fast

Floyd-Warshall Metadata-Assisted Sum

T[i
,j , R] = min (T[ijik-1]

,

TCib
,
R-1] +T[R ,jik-1]) O

sum=s

max = S

if T[i
,

i
, n] <o for any i,

return -o - &

.... k- 1 k- 1 QSumi s

& ⑨

i k · ②
Sum = 1 .

Sum +d. Sum

Tik,+ 5 + T[, j ,
k+]

max = max (1
.

max
,

1
. Sum+ r . max)

↳- cumulative max of sum starting
Knapsack Problem from indexO

n items
, bag can holdh weight Edit Distance

w[i] -weight of item i

v[i] -> value of item i Best cost to edit string A to B

T[i
. j] = using items 1 ..

-

-
i

,
max value w/ weight;? Cost 1 to insert

,
delete

,modify,
= max (T[i- 1

,
j] ,
v[i] +T[i -1

, j
-w[i]]) O to use

Best Tour Ti
. j] = best cost editing first i of A

into first ; of B
func Tour (A

, B)
for ifn

T[0
,
j] = j / insert; times

T[i]= max (A[i] max T[R] +A[i]) T[i , 0] = i //delete : times
k+B[m] < i

return maxT[i] Thi
,
j] = min Thi

,
j-B + 1ins

Valid Tours [T(i-1
, j] + 1/de)

func Tour (A,
B)

Dune Merging Notev T[i-j13 + (1 if A[i]#132;])

for if I w Thi
,
j] = best cost of merging dunes is ..., j

T[i] = 1 + [T(k]
=[0

if it Greedy Starbucks
h =k +B[k] < i

returnTi i j
(Tsi ostomergingrighti can x= drink our alg .

makes@ time it

y= OPT makes@ time it

Word Wrapping If x = y ,

IS holds; we are done !

Else
, swap x into OPT @ time it I who hurting optimality

func Wrap (A ,
m)

TO] = 0 ↓ time remaining on drink

for i1wn
d2 time on drink y

T[i] min T[j] + (m-(Si-j - 1)+A(k]) B/c of our greedy alg . choosing x
,
did

jed0..
--

,

i - 13
4 , , -- Citda

*time OPT spends making drinks

i : (n - i- 1)+ ACh]m Since Cditdz is constant between both
.

We just
return min T[i] &h= i + 1

need to minimize completion time of first-to-finish

drink. But blu of this
,

no drink can finish faster

than d ..
Thus we can swap in x during OPT work

time C
,

Ca
, -, Editda.

